Semiparametric deconvolution with unknown error variance

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deconvolution with unknown error distribution

We consider the problem of estimating a density fX using a sample Y1, . . . , Yn from fY = fX ? fε, where fε is an unknown density function. We assume that an additional sample ε1, . . . , εm from fε is given. Estimators of fX and its derivatives are constructed using nonparametric estimators of fY and fε and applying a spectral cut-off in the Fourier domain. In this paper the rate of convergen...

متن کامل

Pointwise deconvolution with unknown error distribution

This note presents rates of convergence for the pointwise mean squared error in the deconvolution problem with estimated characteristic function of the errors. Résumé Déconvolution ponctuelle avec distribution de l’erreur inconnue. Cette note présente les vitesses de convergence pour le risque quadratique ponctuel dans le problème de déconvolution avec fonction caractéristique des erreurs estimée.

متن کامل

Semiparametric estimators of functional measurement error models with unknown error

We consider functional measurement error models where the measurement error distribution is estimated non-parametrically.We derive a locally efficient semiparametric estimator but propose not to implement it owing to its numerical complexity. Instead, a plug-in estimator is proposed, where the measurement error distribution is estimated through non-parametric kernel methods based on multiple me...

متن کامل

Deconvolution from panel data with unknown error distribution

We devise a new method of estimating a distribution in a deconvolution model with panel data and an unknown distribution of the additive errors. We prove strong consistency under a minimal condition concerning the zero sets of the involved characteristic functions.

متن کامل

Uniform Confidence Bands in Deconvolution with Unknown Error Distribution

This paper develops a method to construct confidence bands in deconvolution when the error distribution is unknown. We work with the case where an auxiliary sample from the error distribution is available and the error density is ordinary smooth. The construction is based upon the “intermediate” Gaussian approximation and the Gaussian multiplier bootstrap, but not on explicit limit distribution...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Productivity Analysis

سال: 2010

ISSN: 0895-562X,1573-0441

DOI: 10.1007/s11123-010-0193-z